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Abstract

Multimodal sarcasm detection, aiming to detect the ironic
sentiment within multimodal social data, has gained substan-
tial popularity in both the natural language processing and
computer vision communities. Recently, graph-based studies
by drawing sentimental relations to detect multimodal sar-
casm have made notable advancements. However, they have
neglected exploiting graph-based global semantic congruity
from existing instances to facilitate the prediction, which ul-
timately hinders the model’s performance. In this paper, we
introduce a new inference paradigm that leverages global
graph-based semantic awareness to handle this task. Firstly,
we construct fine-grained multimodal graphs for each in-
stance and integrate them into the semantic space to draw
graph-based relations. During inference, we leverage global
semantic congruity to retrieve k-nearest neighbor instances
in semantic space as references for voting on the final pre-
diction. To enhance the semantic correlation of representa-
tion in semantic space, we also introduce label-aware graph
contrastive learning to further improve the performance. Ex-
perimental results demonstrate that our model achieves state-
of-the-art (SOTA) performance in multimodal sarcasm detec-
tion. The code will be available at � GGSAM.

Introduction
With the growing reliance on social media platforms like
Twitter and Reddit for expressing sentiments, the accurate
detection of ironic posts (Tay et al. 2018; Pan et al. 2020;
Xu, Zeng, and Mao 2020) and efficient analysis of embed-
ded sentiment (Niu et al. 2016; Xu 2017; Yang et al. 2020;
Xu and Mao 2017; Xu, Mao, and Chen 2018) within so-
cial media data have garnered significant attention from both
academia and industry.

Early research primarily focused on textual modalities.
Some pattern-based approaches (Davidov, Tsur, and Rap-
poport 2010; Maynard and Greenwood 2014; Felbo et al.
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Figure 1: Examples of applying global semantic congruity
for multimodal sarcasm prediction, where blue dots indicate
sarcasm features while the green dots denote non-sarcasm.

2017) employed predefined textual patterns to identify spe-
cific hashtag labels, leveraging lexical indicators and syntac-
tic rules to identify ironic expressions. To improve the abil-
ity to exploit contextual cues, subsequent studies (Tay et al.
2018; Ghosh and Veale 2017; Xiong et al. 2019) explored
the sarcasm contexts or the sentiment of sarcasm makers as
additional cues to model the congruence level of texts, re-
sulting in consistent improvement. However, relying solely
on text modality often fails to fully capture the sentiments of
a post.

Compared to purely textual sarcasm detection, multi-
modal sarcasm detection has been proven more effective for
the ever-expanding social media platforms, as they provide
supplementary visual cues for sarcasm detection. In recent
years, multimodal sarcasm detection has been extensively
studied, resulting in considerable progress. Schifanella et al.
(2016) adopt attention methods to fuse various modalities.
To improve performance, the following methods (Xu, Zeng,
and Mao 2020; Liang et al. 2021, 2022; Liu, Wang, and
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Li 2022; Wei et al. 2023; Qiao et al. 2023; Wen, Jia, and
Yang 2023) designed various modules to capture the contra-
dictory relationships between text and image. Considering
drawing the intricate sentiment connections between modal-
ities is necessary for sarcasm detection, more recent works,
such as InCrossMGs (Liang et al. 2021), CMGCN (Liang
et al. 2022), HKEmodel (Liu, Wang, and Li 2022) and MIL-
Net (Qiao et al. 2023), apply graph neural network (GNN)
for this task, achieving significant advancements.

Although promising, existing graph-based methods
mainly focus on how to draw multimodal graphs and inte-
grate graph features, while neglecting the potential benefits
of utilizing global graph-based semantic congruity from ex-
isting instances to facilitate prediction. From the view of se-
mantic space, multimodal posts with the same labels typ-
ically exhibit more analogous graph representations than
other posts (Wang et al. 2017). By incorporating this global
semantic congruity into the prediction process, there is po-
tential for further improvement in the model’s performance.
As illustrated in Figure 1, for instance, the post being pre-
dicted shows more semantic congruity with the other sar-
casm posts, indicating a higher likelihood of being classified
as sarcasm. This global semantic perspective provides a new
insight for designing the inference paradigm.

In this paper, we introduce the Graph-Based Global
Semantic Awareness Method (G2SAM), a new inference
paradigm that leverages global semantic congruity for mul-
timodal sarcasm detection. Concretely, we propose a Fine-
grained Graph-aligned (FGM) model, a simple yet effec-
tive framework to align and fuse fine-grained unimodal
graphs into a graph-based global space to capture contradic-
tory sentiment cues. During the prediction stage, we utilize
the graph-based semantic congruity to select the k-nearest
neighbor instances of the case to be predicted in the seman-
tic space and vote for the final result, as depicted in Figure 1.
Since the graph-based representations in the semantic space
can be produced in advance, this process only incurs mini-
mal computational cost. In this stage, it is crucial to ensure
the semantic congruity between the retrieved k instances
and the case to be predicted, as the k-nearest neighbor in-
stances directly determine the final prediction. However, the
fine-grained graph-aligned model lacks direct awareness of
the inference process, leading to weakened semantic correla-
tion of graph-based representations and harming the predic-
tion performance. To alleviate this problem, we introduce
Label-aware Graph Contrastive Learning (LGCL), which
constrains graph-based representations with the same labels
to be more similar in the semantic space. This enhances
the semantic correlation of retrieved k-nearest neighbor in-
stances, increasing the likelihood of finding k instances with
the same label as the case to be predicted and improving the
model’s performance. To our best knowledge, this is the first
work to apply global semantic congruity with label-aware
graph contrastive learning for multimodal classification. The
experiment shows G2SAM achieves state-of-the-art on the
public multimodal sarcasm detection dataset (Cai, Cai, and
Wan 2019).

To summarize, the main contributions of this paper are
two-fold:

• This paper introduces a novel inference paradigm to
multimodal sarcasm detection by applying graph-based
global semantic awarenes (G2SAM). It achieves the
SOTA performance in multimodal sarcasm detection.

• To the best of our knowledge, this is the first work to
exploit global semantic congruity combined with label-
aware contrastive learning for multimodal classification,
thus opening up new possibilities for the application of
global semantic awareness in related research fields.

Related Work
Multimodal sarcasm detection. Multimodal sarcasm de-
tection has emerged as a more challenging problem with the
increasing requirement of analyzing multimodal posts on so-
cial media. Schifanella et al. (Schifanella et al. 2016) was
the first to tackle this problem as a multimodal classification
task, by concatenating manually designed multimodal fea-
tures. Besides, HFM (Cai, Cai, and Wan 2019) proposed a
hierarchical fusion model that fuses features extracted from
textual and visual modalities, using a new multimodal sar-
casm detection dataset based on Twitter. D&R Net (Xu,
Zeng, and Mao 2020) constructed the Decomposition and
Relation Network to represent the contextual contrast and
capture the semantic association between multimodal in-
formation, while Att-BERT (Pan et al. 2020) applied the
co-attention and self-attention to learn both intra-modality
and inter-modality congruity information. In terms of graph-
based methods, InCrossMGs (Liang et al. 2021) explored
the sentiment inconsistencies by constructing in-modal and
cross-modal graphs, whereas CMGCN (Liang et al. 2022)
constructed a cross-modal graph for each entity to draw
ironic relations between textual and visual information. Fur-
thermore, HKEmodel (Liu, Wang, and Li 2022) modeled
hierarchical congruity based on cross-attention mechanism
and graph neural networks. And, MILNet (Qiao et al. 2023)
built three graphs to learn the local and global incongruities.
However, these methods fail to exploit graph-based semantic
congruity from existing instances to guide the model toward
making better predictions during inference.

Graph Neural Networks. Graph Neural Networks
(GNNs) have significantly advanced the learning represen-
tations of graph-structured data in recent years. The concept
was first proposed by GCN (Kipf and Welling 2016), which
applied a spectral graph convolution operation to the input
data. This operation essentially involves multiplying the in-
put features by the graph Laplacian matrix. Since then, there
have been numerous extensions and variations of GNNs,
such as graph attention networks (Veličković et al. 2017) that
applied self-attention to weight the importance of neighbor-
ing nodes, and GraphSAGE (Hamilton, Ying, and Leskovec
2017), which aggregated information from a node’s local
neighborhood using a fixed-size feature vector. More recent
works have explored the applications of GNNs for various
areas, such as graph classification (Sui et al. 2022), link pre-
diction (Kou et al. 2020), and recommendation systems (Fan
et al. 2019). Despite their successes, the potential of GNNs
for multimodal modeling tasks can be further explored from
the global semantic perspective.



Figure 2: The overall architecture of our model. The left figure presents fine-grained graph-aligned model to generate multi-
modal graph-based representation. And the right figure illustrates how to generate the result with graph-based global semantic
congruity, where this inference process can be aware via label-aware graph contrastive learning during the training stage.

Methodology
As illustrated in Figure 2, the architecture of G2SAM is
mainly composed of three procedures: 1) to construct graph
representations for both textual and visual modalities and
fuse the graphs, we proposed a fine-grained graph-aligned
model (FGM); 2) we project the graph-based representation
to semantic space, and k-nearest neighbor instances features
are selected for semantic prediction according to global se-
mantic incongruity; 3) to ensure the semantic correlation of
retrieved k-nearest neighbor instances and improve the pre-
diction performance, we also introduce label-aware graph
contrastive learning.

Fine-grained Graph-aligned Model
To achieve accurate multimodal sarcasm detection, it is es-
sential to recognize contradictory sentimental cues from dif-
ferent modalities. Therefore, building fine-grained relation-
ships between text and images is necessary to better capture
these sentimental differences. For this purpose, we first draw
the fine-grained graphs: token-level graphs for the text and
region-level graphs for the image. We then design a graph-
aligned fusion module to align and fuse fine-grained graph
in the semantic space.

Fine-grained Feature Extraction. Given an input text-
image pair (T, I), the first step is to extract textual and visual
representations. For text T , the pre-trained BERT-base (De-
vlin et al. 2018) is applied to transform T into a sequence of
token-level feature Xt = {t1, t2, ..., ts}, where Xt ∈ Rs×d.
For image I , we utilize a pre-trained toolkit (Anderson et al.
2018) to extract k regions, denoted as R = {r1, r2, ..., rk}.
And each region is resized to 224 × 224 and divided into

p patches. Subsequently, a pre-trained Vision Transformer
ViT-B/32 (Dosovitskiy et al. 2020) is employed as the im-
age encoder to capture the semantic feature for each region.
Thus, the representation of the i-th region can be denoted as
Ii = {vclsi , v1i , v

2
i , ..., v

p
i }, where cls is the representation of

[CLS] token and Ii ∈ R[p+1]×d. We use the representation
of [CLS] token to represent each region, resulting in the fi-
nal region-level feature Xv = {vcls1 , vcls2 , ..., vclsk } for the
image, where Xv ∈ Rk×d.

Fine-grained Graph Modeling. To measure the rela-
tions for sentimental cues of each modality, we utilize the
obtained fine-grained representations to construct the fine-
grained unimodal graphs. To construct the textual graphs,
we follow HKEmodel (Liu, Wang, and Li 2022), where
the text tokens serve as graph nodes and relations extracted
from spaCy1 between words denote as edges. For the visual
graphs, we build edges between each object region accord-
ing to the cosine similarity score of representation. Then,
we model the graphs in textual and visual modalities with
2-layer graph attention networks (GAT) (Veličković et al.
2017). As such, we obtain the token-level textual graph
Gt = {tg1, t

g
2, ..., t

g
s} and region-level visual graph Gv =

{vg1 , v
g
2 , ..., v

g
k} respectively.

Graph-aligned Fusion Module. In contrast to previous
complicated fusion methods (Liang et al. 2022; Liu, Wang,
and Li 2022; Qiao et al. 2023), we design a relatively simple
approach to align and fuse the graphs of text and images.
Concretely, we first concatenate the visual and textual graph
representations Gv and Gt as G[v,t]. Then, we employ M

1https://spacy.io/



stacked self-attention layers to align and fuse the two graph
representations. In each layer, the output can be computed
as follows:

G = softmax(
(G[v,t]Wq)

T

√
d

(G[v,t]Wk))(G
[v,t]Wv) (1)

where Wq ∈ Rd×d, Wk ∈ Rd×d and Wv ∈ Rd×d are query,
key, and value projection matrices, respectively. For simplic-
ity, we omit the residual connection and layer normalization
for each self-attention layer. Here, we denote the representa-
tions for the last attention layer as GM = {g1, g2, ..., gk+s}
and [, ] represents the concatenation operation.

Considering the representations of graph-aligned fusion
can not be directly applied for classification, we employ an
aggregated attention layer to perform dimensionality reduc-
tion for sarcasm classification, which is formalized as:

r̃i = GELU(giW1 + b1)W2 + b2 (2)

q̃ =

k+s∑
i=1

exp(
r̃i∑k+s
j=1 r̃j

)(gi) (3)

q = GELU(q̃W3 + b3) (4)
where GELU is the activation function, q ∈ Rd.

Graph Semantic Congruity Prediction
During inference, G2SAM utilizes graph-based global se-
mantic congruity from existing instances to make predic-
tions, as depicted in Figure 2 (right). To achieve this, we first
project sentimental graphs for each instance into the seman-
tic space. Subsequently, we retrieve the k-nearest neighbors
in the semantic space, which are then utilized for prediction.

Graph-based semantic space. To better illustrate this
process, we simplify the fine-grained graph-aligned model
that maps the graph to graph-based semantic representa-
tion as ϕ(·). For each instance (xi, yi) from the training
set, we use qi = ϕ(xi) map xi to graph-based represen-
tation qi. Thus, the graph-based semantic space D́ can be
constructed by a single forward pass over each training in-
stance: D́ = (qi, yi)

N
i=1, where N is the number of instances

in the graph-based semantic space. Note that this process can
be calculated in advance without any additional training be-
cause the graph-based representations in the semantic space
are only utilized for prediction.

Prediction. To determine the final prediction ŷCr ∈ [0, 1]
for the current case x during test time, we select k-nearest
neighbor (kNN) instances according to global semantic con-
gruity and voted for the final prediction. Concretely, the
graph-based representation ϕ(x) for the input text-image
pair x acts as a query q to retrieve the k-nearest neighbor
graph representations N = {(qi, yi)}ki=1 from graph-based
semantic space. Here, we apply Euclidean distance to mea-
sure the global graph-based semantic congruity between q
and N , for the magnitude of vectors is more appropriate to
reflect the semantic correlations in the semantic space. And
this prediction process ŷkNN can be defined as:

ŷkNN =

k∑
i=1

αiyi, ai =
e−∥qi−q∥2

2/τ∑
j e

−∥qj−q∥2
2/τ

(5)

where ∥ ∥22 indicates the euclidean distance, τ is the kNN
temperature, and αi denotes the weight of the i-th neigh-
bor. According to semantic correlation, the nearest neighbor
instances are more likely to have the same label as most re-
trieved cases. Thus, we apply a voting mechanism to obtain
the final prediction ŷ as follows:{

ŷ = 1, if ŷkNN ≥ 0.5
ŷ = 0, if ŷkNN < 0.5

(6)

Label-aware Graph Contrastive Learning
As mentioned above, the k-retrieved nearest neighbor (kNN)
instances directly determine the final sarcasm detection in
G2SAM. However, the fine-grained graph-aligned model
lacks direct awareness of the inference process. This can
diminish the semantic correlation of the graph-based rep-
resentation, thereby negatively impacting the prediction per-
formance. To solve this issue, we propose label-aware graph
contrastive learning (LGCL) to enhance graph-based seman-
tic correlation in semantic space. In this principle, the graph-
based feature with the same label is forced to be in semantic
congruity in semantic space, which ensures the k-retrieved
instances are more likely to have the same label as the pre-
dicting case. The key to utilizing contrastive learning is how
to construct positive or negative examples. Previous work
(You et al. 2020) selects one as a positive example in a mini-
batch, while all other samples serve as negatives. However,
this is not adapted to G2SAM for two reasons: 1) due to
the absence of positive instances in a mini-batch, it requires
the design of complex data augmentation methods to gener-
ate contrastive pairs, which introduces additional computa-
tional costs. 2) selecting one instance as a positive example
is not reasonable as there may be multiple instances in a
mini-batch with the same positive label.

To handle the above two problems, we introduce label-
aware graph contrastive learning, where the instances in the
mini-batch are directly treated as positive or negative exam-
ples according to their labels. Specifically, the sarcasm in-
stances in the batch are labeled as positive, while the non-
sarcasm instances are labeled as negative examples. To pro-
vide a detailed explanation of our graph contrastive learning
algorithm, we present its step-by-step process in Algorithm
1. In the algorithm, Norm signifies the normalization func-
tion, gather denotes gathering values along with an index,
and τ̂ represents the temperature of the graph contrastive
learning. Especially, there are two steps in the algorithm:
the first step is to generate the unmask label Lt according
to the sarcasm labels in the batch; in the second step, we
compute the similarity matrix l and leverage the unmask la-
bel Lt and the similarity matrix l to calculate the contrastive
loss LLGCL to optimize the model.

Training loss
We optimize the multimodal graph fusion model by min-
imizing the cross entropy loss Lce as previous work (Cai,
Cai, and Wan 2019), which can be defined as:

Lce = CrossEntropy(GELU(qWce + bce)) (7)



Algorithm 1: LGCL Algorithm
Input: The label in the batch is L, which is a list of

all samples, assuming that the samples are di-
vided into two categories: sarcasm (1), non-
sarcasm (0); The fine-grained graph-aligned
model ϕ(); the text-image pairs x; C denotes
the length of Lc; S denotes length of L.

Output: Label-aware graph contrastive loss LLGCL

initialize Lc = [L− 0,L− 1] and Lt = list()
for i = 1; i ≤ C; i + + do

initialize Ĺt = list()
for j = 1; j ≤ S; j + + do

if Lc[i][j] equals 0 then
Ĺt.append(j)

end
end
Lt.append(Ĺt)

end
q́ = Norm(ϕ(x)), ĺ = q́@q́T

l = LogSoftmax(́l)/τ̂ .view(−1)
Lcl = Lt[L[1]]
for k = 2; k ≤ S; k + + do

Lcl = concat(Lcl,Lt[L[k]] + k× S)
end
LLGCL = gather(l, index = Lcl)/Lcl.size(0)
Return LLGCL

Dataset Label Train Val Test

HFM
Positive 8642 959 959
Negative 11174 1451 1450

All 19816 2410 2409

Table 1: Statistics of the experimental data.

Besides, we apply graph contrastive loss LLGCL defined in
Algorithm 1 to distinguish graph features. Totally, the train-
ing loss can be defined as:

L = Lce + γLLGCL (8)

where γ is a hyper-parameter to balance different losses.

Experiments
Datasets
The primary experiments were carried out using the publicly
accessible multimodal sarcasm detection dataset (Cai, Cai,
and Wan 2019). In this dataset, tweets that express sarcasm
are considered positive examples, while those that do not ex-
press sarcasm are deemed negative examples. Each example
in the dataset comprises a text and an associated image. The
statistics for the dataset is listed in Table 1.

Experimental Settings
To ensure fairness, we follow previous works (Cai, Cai, and
Wan 2019; Liang et al. 2021) for dataset pre-processing.
We use pre-trained BERT-base and ViT models for text and

image embeddings respectively, both set to size 768. In vi-
sual graph modeling, we extract 36 regions per image, cre-
ating edges between regions with cosine similarity over 0.6.
The graph-aligned fusion module has 6 self-attention layers.
During training, we use Adam optimizer with a learning rate
of 2e-5, weight decay of 5e-3, batch size of 64, and dropout
rate of 0.5. Early stopping with a patience of 5 is applied to
prevent overfitting. For graph contrastive learning, the tem-
perature τ̂ is set at 0.07. Performance is measured using Ac-
curacy, Precision, Recall, and F1-score, following Cai, Cai,
and Wan (2019); Liang et al. (2022). Macro-average scores
are reported to account for imbalanced data distribution.

Baseline Models
To fully validate the performance of G2SAM, we select both
unimodal and multimodal baselines.

Unimodal Baselines. For text-modality methods, we uti-
lize TextCNN (Chen 2015), Bi-LSTM (Graves and Schmid-
huber 2005), and BERT(Devlin et al. 2018), which is a pre-
trained model specifically designed for text classification.
As for image-modality methods, we leverage the pooled fea-
ture of the pre-trained Resnet model, along with the [CLS]
token obtained from the pre-trained ViT model, to detect sar-
casm.

Multimodal Baselines. For multimodal methods, we
consider the following baseline methods for comparison.
These include HFM (Cai, Cai, and Wan 2019), which pro-
posed a hierarchical fusion model for multimodal sarcasm
detection. Att-BERT (Pan et al. 2020) proposed different
attention strategies to detect sarcasm. DIP (Wen, Jia, and
Yang 2023) introduced a channel-wise reweighting strategy
to model the uncertain correlation. Additionally, we also
evaluate against recent graph-based methods, such as In-
CrossMGs (Liang et al. 2021), which employed a heteroge-
neous graph structure to capture ironic features from differ-
ent perspectives. CMGCN (Liang et al. 2022) constructed
a cross-modal graph for each instance to explicitly draw
the ironic relations between different modalities. HKEmodel
(Liu, Wang, and Li 2022) proposed a hierarchical frame-
work for sarcasm detection by exploring atomic-level and
composition-level congruities based on graph neural net-
works. And MILNet (Qiao et al. 2023) designed three graphs
to capture multimodal incongruities.

Experimental Results
Main Results
To evaluate the performance of G2SAM, we summarize the
experimental results of various models for the multimodal
sarcasm detection task in Table 2. From these results, we
can derive several conclusions. Firstly, it is obvious that the
models based on the text modality are more competitive
against the baselines on image modality, due to the lower
information density of the image modality compared to the
text modality, which has also been discussed by Hu et al.
(2022); Liu, Wang, and Li (2022). Furthermore, the multi-
modal models outperform the unimodal sarcasm models as
they provide a greater number of sentimental cues for sar-
casm detection. Generally, our G2SAM achieves the best



MODALITY METHOD Acc(%) Pre(%) Rec(%) F1(%) Macro-average
Pre(%) Rec(%) F1(%)

image Resnet 64.76 54.41 70.80 61.53 60.12 73.08 65.97
ViT 67.83 57.93 70.07 63.43 65.68 71.35 68.40

text Bi-LSTM 81.90 76.66 78.42 77.53 80.97 80.13 80.55
BERT 83.85 78.72 82.27 80.22 81.31 80.87 81.09

image+text

HFM 83.44 76.57 84.15 80.18 79.40 82.45 80.90
Res-BERT 84.80 77.80 84.15 80.85 78.87 84.46 81.57
Att-BERT 86.05 78.63 83.31 80.90 80.87 85.08 82.92

InCrossMGs∗ 86.10 81.38 84.36 82.84 85.39 85.80 85.60
CMGCN∗ 86.54 - - 82.73 - - -

HKEmodel∗ 87.36 81.84 86.48 84.09 - - -
MILNet∗† 88.72 84.97 87.79 86.37 87.75 88.29 88.04

DIP 89.59 87.76 86.58 87.17 88.46 89.13 89.01
Ours∗ 90.48 87.95 89.02 88.48 89.44 89.79 89.65

Table 2: Experimental results for sarcasm detection. We use ∗ to indicate the graph-based models. † indicates the reproduced
results by unifying the textual backbone with the previous works. As mentioned by Liang et al. (2022), p-value ≥ 0.05 indicates
a significant improvement for this task.

Model ACC(%) Pre(%) Rec(%) F1(%)
MILNet 88.72 84.97 87.79 86.37
FGM 89.01 85.73 87.15 86.43
FGM+kNN 89.86 86.82 87.89 87.35
FGM+LGCL 89.33 86.29 87.56 86.92
FGM+kNN+LGCL 90.48 87.95 89.02 88.48

Table 3: The ablation results of our model. To show the su-
periority of FGM, we also provide the result of the previous
SOTA graph-based model MILNet for comparison.

Model ACC(%) Pre(%) Rec(%) F1(%)
ViT 67.25 57.48 69.93 63.10
G2SAM(ViT) 68.75 58.20 70.59 63.79
BERT 84.74 79.27 83.52 81.34
G2SAM(BERT) 85.65 80.09 84.31 82.15
DIP 89.59 87.76 86.58 87.17
G2SAM(DIP) 90.21 88.01 87.45 87.73

Table 4: Performance of three different types of models
equipped with our G2SAM for sarcasm detection.

performance across all metrics, demonstrating the advantage
of exploring graph-based semantic awareness. Compared to
the previous SOTA model DIP, G2SAM exceeds it by 0.89%
and 1.31% in terms of accuracy and F1. Given that the mar-
gin of improvement for most previous models is less than
1%, this constitutes a significant enhancement, demonstrat-
ing the strong performance of the G2SAM.

Ablation Study
In order to evaluate the effectiveness of different compo-
nents, we conduct an ablation study in Table 3. Interest-
ingly, despite its simplicity compared to the SOTA graph-
based model MILNet, the fine-grained graph-aligned model
(FGM) delivers comparable performance, indicating its abil-
ity for aligning different unimodal graphs and identifying

conflicting sentiment cues across different modalities. In ad-
dition, we notice that the improvements can be further im-
proved by leveraging semantic congruity (kNN) for predic-
tion during test time, which proved the superiority of this
inference paradigm. Moreover, incorporating label-aware
graph contrastive learning (LGCL) into FGM can boost the
predicting performance, as LGCL enhances the semantic
correlation of representations in the semantic space. Since
each module has its own unique strengths, it is evident that
the FGM, when equipped with LGCL in the new inference
paradigm (kNN), ultimately produces the most superior re-
sult.

Figure 3: The curve of performance for multimodal sarcasm
detection with different settings.

In addition, we also conduct the experiments to verify
G2SAM can boost different types of models. We respec-
tively select text-modality, image-modality, and multimodal
models for sarcasm detection to perform the experiments in
Table 4. It can be seen that the proposed G2SAM improves
the performance steadily for the pure text-modality model
(BERT). Although the visual modality contains less senti-
mental information for sarcastic clues, G2SAM still brings
some improvement to the image-modality model (ViT).
Even though the previous SOTA model, DIP (Qiao et al.
2023), exhibits significant performance, it can still be fur-



Figure 4: User study for sampled instances. Here, we pro-
vide the top 10 retrieved kNN instances for analysis. And αi

denotes the weight of the i− th neighbor.

ther enhanced when equipped with G2SAM.

Optimal Settings Exploring
In this section, we conduct experiments to determine the op-
timal settings for G2SAM. We first investigate the optimal
setting for graph semantic incongruity prediction. Figure 3
illustrates the curve for the number of neighbors and in-
stances required to construct a graph-based semantic space.
Figure 3(a) shows that increasing the number of neighbor
instances leads to continuous improvement in accuracy and
F1 score, but it decreases accuracy when k is greater than
20. Therefore, selecting 20 nearest neighbor instances for
prediction is optimal since it achieves the best performance.
Figure 3(b) demonstrates that the model achieves its best
performance when there are 1024 graph-based instances in
the semantic space. However, increasing N will harm perfor-
mance because super abundant instances in the graph space
make it difficult for the model to capture similar cases.

Case Study
In Figure 4, we provide a case study to provide a detailed
analysis of inference with global semantic congruity. As de-
picted in the figure, the majority of retrieved reference in-
stances clearly indicate the true label, particularly in the first
two cases where sarcasm or non-sarcasm cues are explicitly
conveyed. Consequently, these two cases are relatively sim-
ple for the model to confidently output the correct answer.
However, when the case obscurely conveys sarcasm or non-
sarcasm cues, it introduces some difficulty for the model
to identify the true label. In the third case, the selected in-
stances are divided into two categories, indicating the case’s
difficulty in distinguishing the true label. Despite this, we
find the vast majority of reference instances still reveal the
correct label, showing the ability of G2SAM. This interest-
ing phenomenon aligns with our intuitive understanding that
the challenging case tends to have lower classification con-
fidence scores.

Figure 5: Distribution of the retrieved top 200 nearest neigh-
bors instances for a sarcasm case. Here, the LGCL is re-
moved in Figure (a).

Visualization

To further visually demonstrate the effectiveness of our
LGCL, we visualize the feature distribution around a sar-
casm instance. We retrieve the top 200 nearest neighbor in-
stances as reference instances for a sarcasm case, and we
employ T-SNE3 algorithm for dimensionality reduction, ob-
taining a 2-dimensional feature vector distribution visual-
ized in Figure 5. Figure 5(a) depicts the distribution without
LGCL, while Figure 5(b) represents the distribution when
the model is equipped with LGCL. From figure 5(b), we
find that most retrieved instances exhibit a higher likelihood
of indicating the true label (sarcasm), whereas the instances
in Figure (a) contain more noise (non-sarcasm). This sug-
gests that the LGCL enhances the semantic correlation of re-
trieved k-nearest neighbor instances, thereby improving the
prediction performance.

Conclusion

In this paper, we propose a novel paradigm for handling
multimodal sarcasm detection task by using graph-based
global semantic awareness. Specifically, we propose an ef-
fective fine-grained graph-aligned model to capture contra-
dictory sentimental cues, and then project the aligned fea-
tures into semantic space. During the inference stage, we
leverage the graph-based semantic congruity to retrieve the
k-nearest neighbor instances in the semantic space and make
predictions based on them. To improve the performance, we
introduce label-aware graph contrastive learning to enhance
semantic congruity for graph-based semantic representation.
Extensive experiments are conducted to verify the effective-
ness of the proposed method. Finally, this work also shows
the universality of multimodal sentiment detection tasks, in-
dicating huge potential for extension to other multimodal
classification research areas. Due to space limitations, we
omitted the relevant discussion in the camera-ready version.
We are looking forward to researchers exploring the poten-
tial of applying this paradigm to other multimodal domains.

3https://github.com/mxl1990/tsne-pytorch
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